Orgonotic Pulsation*

The differentiation of orgone energy from electromagnetism presented in talks with an electrophysicist

MEASUREMENT OF THE ELECTROSCOPIC DISCHARGE IN THE ORGONE ACCUMULATOR (1940-1941).

Electrophysicist (E.) I have taken plenty of time. I would not have thought that a simple electroscope could make one rack one's brain so.

Orgone biophysicist (O.) I had the good fortune not to approach the electroscope from inorganic physics, but from the study of the biological emotions.

E. You don't mean to say that the electroscope is more closely related to the realm of the living than to that of the non-living?

O. That is precisely what I mean. The electroscope, not the voltmeter, is the appropriate instrument for determining the nature of biological energy processes.

E. You exclude the oscillograph all too readily.

O. I'm not eliminating it. But if I can observe phenomena in terms of hundreds of meters, I shall not use measures of fractions of millimeters, if for no other reason than to save my eyes.

E. You make great demands on my ability to comprehend.

O. No greater ones than were made on the discoverer by the functions of orgone energy. It took years of uninterrupted, hard work and many sleepless nights before I was forced to assert that orgone is not electricity. And all the words coined by physics did not make the task easier.

E. But surely you don't believe that there is a consensus of opinion among the electrophysicists.

O. I know that. But there is immediate consensus when it

*Written 1939-44. Translated from the German by Theodore P. Wolfe. Reprinted with permission of Erica Wolfe Burke.
comes to denying social recognition to a new discovery.

_E._ Bitterness does not help research. It is better to prove your contention that the electroscope is more closely related to the realm of the living than to that of the non-living.

_O._ I will have to qualify that statement. *The energy which governs the living also functions in the realm of the non-living.* This means only that the electroscope lends itself poorly to an investigation of those processes which characterize the electrical-machine industry. On the other hand, it lends itself admirably to a study of the non-living, as well as the living, functions of the orgone.

_E._ In our first discussion you explained that many functions of the orgone are incompatible with the concept of positive and negative electric fluids. But you have failed to replace this theory by another and better one. The theory of two electrical fluids explains the deflection of the electroscope leaf which occurs with the approach of a negatively charged rubber rod. The negative electricity of the rubber attracts the positive electricity of the electroscope into the disc and repels the negative electricity into the leaf. This negative electricity in the leaf causes it to deflect. If you remove the rubber rod, the deflection disappears. The positive electricity of the disc becomes free again and neutralizes the negative charge of the leaf.

_O._ We do not have to enter into a deep discussion of the theory of positive and negative electrical fluids. I found that this theory cannot explain orgonotic phenomena. I also found facts which show clearly that orgone is not electricity. Friction electricity is only a special manifestation of orgone energy and consequently something different from the electricity of Faraday.

_E._ What has that to do with measuring in terms of hundreds of meters and fractions of millimeters?

_O._ Orgone biophysics has been searching for years for the bridge between the realm of the orgone and the electricity of Faraday. The connection has remained obscure thus far, but its existence cannot be doubted. There are some curious facts to be considered. Mathematically, 1000 volts cannot equal, say, 50 millivolts. But this is the impossible conclusion we would have to draw were we to equate orgone and electricity. The first measurements of the biological energy at the surface of the human organism were made with a sensitive electromagnetic oscillograph. The potential differences between an unexcited and an excited place on the surface of the organism were shown to be between 0 and 100 millivolts. On the other hand, a light stroke of the hair of the head or an erogenous zone gives an electroscope charge corresponding to about 1000 volts. The reactions of the electromagnetic measuring system are thus in minimal fractions of those at the electroscope. Nevertheless, there is a connection between orgone and electricity, but this connection is problematic. *The few millivolts of the oscillograph cannot be the same as the many hundred volts of the electroscope.* If we consider the gigantic work achieved by a living organism, it becomes obvious that the reactions of the static electroscope reflect reality much more faithfully than the galvanometer. The electroencephalogram reveals only unimportant reactions; they are diminutive side effects compared with the work of the brain in terms of energy.

_E._ This contradiction has never been detected. Your facts really do not allow one to equate the volts of the voltmeter with those of the electroscope. I am just struck by the fact that we can discharge the 1000 volts of the electroscope into our body without doing any harm, even without feeling it, while it would be quite unhealthy to touch a wire with a tension of 1000 volts. This certainly indicates a fundamental difference between the energy at the voltmeter and that at the electroscope. I must admit that the idea that a rubber rod contains only negative electricity, without its positive counterpart, begins to strike me as peculiar.

_O._ You are getting entangled in that jungle of theories into which every orgone biophysicist is inevitably drawn when he tries to differentiate the orgone from electricity. Physics has equated the unit of static charge to 300 volts of electrical tension. With that, the erroneous concept crept into electrical theory that the static tension of an electroscope is of the same nature as the volt tension of an electric current.

_E._ Apart from a conceptual clarification of the quality of the orgone, do you have any clear-cut experimental proofs that the
orgone functions according to its own specific laws?

O. There are such proofs. So many of them are obtained with the electroscope that we are justified in calling it an orgonometer.

E. Agreed. Meanwhile, what about the proof?

O. Would you summarize for us the prevailing theory of the discharge of the electroscope, our orgonometer?

E. That's simple enough. Theoretically, a charged electroscope should retain its charge. Experience shows that this is not quite the case. There is a spontaneous discharge, the so-called "natural leak". It is usually ascribed to the humidity of the air which is assumed to establish a connection between the rod which carries the leaf and the casing. However, there is no consensus on this point among physicists. But if one subtracts the spontaneous discharge from the measurements made, it is possible to exactly determine the speed of discharge. This principle is always used in radium research. It states that radiation of any kind electrifies or ionizes the air between the rod and the casing. Since ionized air equalizes electrical potentials more quickly than non-ionized or weakly ionized air, the speed of discharge of the electroscope is an indication of the intensity of the ionization effect.

O. According to this concept, then, the quantity of electrical energy from a radiation source is in direct proportion to the speed of the electroscopic discharge. In other words, the more intense the radiation, the more rapid the discharge.

E. That's right. In principle, the measurement of cosmic radiation rests on this. Electrosopes discharge more rapidly in higher strata of the atmosphere than in lower. This points to a more intense cosmic radiation in the higher strata. The diminished intensity in lower strata is ascribed to the absorption of cosmic rays by the atmospheric air. But cosmic rays possess an enormous capacity to penetrate, for they have been found, by way of measurement of the electroscopic discharge, deep in the ocean and in mines. This capacity for penetration is not yet understood.

O. This concept can be correct only if the prevailing theory of electroscopic discharge is correct. It stands and falls with the theory of the electroscope.

E. You don't doubt the fact that an electroscope which contains radium, or is exposed to X-rays, discharges more quickly than an electroscope without such ionizing influence?

O. I don't doubt this fact. But I object to the uncritical application of concepts which are valid in one field to another field. You fail to consider the spontaneous discharge of the electroscope.

E. Not at all. The air always contains a certain amount of free ions, which may be minimal, but is still large enough to explain the spontaneous discharge of the electroscope.

O. If I remember correctly, the phenomenon of lightning is explained by "air electricity." But you say that the ion content of the air is very small. Otherwise the air could not be a poor conductor, or, to put it differently, a good insulator. How can this statement be reconciled with the explanation that such vast amounts of energy can accumulate in the atmosphere that one bolt of lightning can discharge millions of volts?

E. This is indeed a contradiction which has not been explained. One simply does not know where the gigantic amounts of electrical energy discharged in a thunderstorm come from. They are at variance with the very small amount of free ions in the atmosphere.

O. Don't you think that here we are encountering the same impossible equation according to which millions of volts equal millivolts?

E. That is really true.

O. From the standpoint of the theory of positive and negative electricity, this strange equation is unsolvable. But we know that the atmosphere contains orgone, and that orgone is not electricity, though we do not know what the latter is and how it functions. Let us now bring in our orgone and no longer measure the charges "electroscopically," but orgonometrically.

E. All right. I admit I am very curious, as I find myself in a tight corner. You are aware that you have to prove quite a lot.

O. I know. What experiment would you suggest?

E. I can only start from certain known suppositions. One is the acceleration of electroscopic discharge under the influence
of ionizing radiation. Let us measure the speed of discharge inside and outside your orgone accumulator. If the speed of discharge is the same, then there is no difference in the energy concentration. Your contention that there is a concentration of atmospheric energy in the accumulator would be proven incorrect, and we would be unable to decide whether or not orgone is the same as electricity. If, on the other hand, the accumulator concentrates the energy, then there must be a difference in the speed of electroscopic discharge. If your orgone is the same as electricity, as I am still assuming, then the electroscope will discharge more quickly on the inside than on the outside. Do we agree?

O. Yes, on the proviso that you admit the difference between orgone and electrical energy if the experimental result is neither of the two you mentioned, but a third, unexpected one.

E. Granted. But I do not expect a third possibility; only the two are conceivable.

O. Let’s proceed to the experiment. We charge the electroscope, my orgonometer, to the same scale division for both measurements.

E. —The electroscope discharges much more slowly in the orgone accumulator than outside in the free air. Neither of the two predicted possibilities came true. This result is entirely unexpected, and I cannot explain it.

O. Only because you continue to approach the orgone function from the theoretical assumptions of electricity.

E. It could be that the air on the outside circulates more quickly around the electroscope than on the inside of the accumulator. Consequently, a greater number of air ions streak by and accelerate the discharge compared with that on the inside.

O. Couldn’t this explanation be checked?

E. I shall let the electroscope discharge twice in the open air, one time as is, and one time with the use of an electric fan.—I find that the fan has no influence on the speed of discharge. After this, I must admit a fundamental difference, even an antithesis, between the atmospheric energy and electromagnetic energy. But now it is up to you to make comprehensible this result, which clearly contradicts the application of electrical concepts.

O. That will not be possible without further observations at the orgonometer. For example, it is easy to see that a Slav, whom we do not know, reacts differently from an Englishman whom we know well. It is much more difficult to define this difference before one has learned to know the unknown. You will admit now that it was necessary to free oneself from the misplaced application of the electrical theory of the two opposite fluids before it was possible to basically understand the orgone, which is quite different.

E. I am glad to admit that now. I am very curious what the study of the specific orgonotic qualities will reveal. Have you any ideas?

O. Although I know that the orgone is an energy with specific biological effect, and although it would be easy to derive an hypothesis from the biological functions of the orgone, I prefer to let the physical experiment speak for itself. If the results agree with the basic biological functions, all the better. If not, there will be new riddles.

E. I couldn’t say at this moment which possibility I would prefer. If there were agreement, this would provide a decisive insight into the mystery of living functioning. If there were not, we would have a lot to think about.

VARIATIONS IN ATMOSPHERIC ORGONE CONCENTRATION. A PRELIMINARY INTERPRETATION OF THE ORGONE FUNCTION (AUGUST 1941).

E. I have tried to understand the orgonometer’s slower rate of discharge in the orgone accumulator. I thought there might be radioactive substances somewhere in the area outside the accumulator. This could explain the fact that the orgonometer discharges more slowly in the accumulator than on the outside, because the metal walls would prevent the accelerating influence of the radium activity from entering the inside of the accumulator.
O. Do you assume that such substances are to be found everywhere?

E. No.

O. You obtain the same result no matter where you place the apparatus. Orgone is present everywhere, even though in varying concentrations. Radium, on the other hand, is rarely found.

E. That's true. Your theory would be strengthened however if the phenomenon of a slower discharge in the presence of a _stronger_ orgone influence could be confirmed in some other way.

O. There is such a confirmation. I found it by chance when I measured the daily variations of the atmospheric orgone concentration over a period of several weeks in the summer of 1941.

E. What gave you that idea? As far as I know, such an experiment was never made before.

O. This experiment was made to refute the belief that humidity or atmospheric "electricity" influence the spontaneous discharge of the electroscope. If you measure the electroscopic discharges every hour, what result would you expect from the standpoint of the air ion theory?

E. Two assumptions would be possible: First, that the ion content of the air remains essentially constant. In this case, the spontaneous discharges of the electroscope would also remain constant. Second, that the sun radiation increases the electric charges in the atmosphere. For example, the air at high altitudes is strongly ionized, containing much orgone. In this case, one would expect that the discharge of the electroscope, measured hourly, would be slowest in the early morning, most rapid at high noon, and again slower toward evening.

O. From the standpoint of your electric theory, this expectation is entirely correct. However, the hourly measurements with the orgonometer show the exact opposite. Do you want to try it?

E. This is too important to be taken lightly. I shall check up on it. —

I find you are right. _On clear days, the discharge of the electroscope is far more rapid in the early morning than between 2 and 4 pm, and it becomes more rapid again toward evening._ This contradicts the theory of ionization and agrees with the results obtained from measuring the discharge inside and outside of the accumulator. But that doesn't make the result comprehensible. Clearly, the ionization theory fails here; a new interpretation is difficult.

O. Let's leave the interpretation to further observation. From the standpoint of the ionization theory, what result would be expected in the case of cloud formation or a thunderstorm?

E. The electroscope would discharge much more slowly because the clouds decrease the ionization of the air by the sun and take up electrical charges from the atmosphere.

O. Do you want to take some measurements just before and then during a thunderstorm? There is a good deal of cloud formation just now.

E. I find that the electroscopic discharges become _more rapid_ before and during cloud formation. A unit of charge, which takes dozens of minutes to discharge during clear weather, discharges in a few minutes during heavy cloud formation. I am going to take electroscopic measurements at home when we have our next thunderstorm, and will give you a report.

O. Our orgonometer thus measures orgone, not electrical charges. Before reaching any theoretical conclusions, I would like to mention a further contradiction in the theory of electricity, a contradiction which is completely resolved by the discovery of the atmospheric orgone. Does an electrically charged metal sphere, which we have equipped with a metal point, discharge faster or slower than a similar sphere without such a point?

E. The sphere with the point will naturally discharge much more quickly. It gives off its electrical charge to the surrounding air much more rapidly than a sphere without a point. Every schoolboy knows that!

O. Exactly. Now, another question: How does physics explain the effect of the lightning rod?

E. Every schoolboy knows that, too. Benjamin Franklin had observed that metal points draw electrical charges from rubbed electrical substances, such as amber or glass. That's what he based his lightning rod on. The metal point draws the electricity from the charged cloud. It also attracts the lightning and conducts it to the ground, thus protecting the building against the
WILHELM REICH

Orgonotic Pulsation

uncontrollable spreading of the electricity in the lightning.

O. If I remember correctly, there was once a dispute among the learned members of a commission as to whether the lightning rod should be provided with a sphere or a point.

E. I don’t see why you should mention this uninteresting event.

O. I only wished to indicate that, as long as two hundred years ago, there was an unconscious hint of the contradiction in the theory of electricity which we are now discussing. Has it ever struck you that one and the same theory assumes that a metal point gives off electricity easily and on the other hand, in one breath, so to speak, it absorbs it easily? Is it conceivable that one instrument should fulfill two such antagonistic functions with one and the same energy?

E. I was never struck by that contradiction, but I believe that many physicists have given it thought.

O. Would it be possible to draw off electrical energy from a charged sphere by means of a dynamo machine which is placed about one meter from a lightning rod?

E. I don’t know, but I would doubt it. Electron and X-ray tubes certainly do not contain any kinds of points at the anode to attract the electrons coming from the cathode. On the other hand, there is the “electric wind” at a candle flame which is placed between a metal point as cathode and a plate as anode.

O. I do not intend to meddle in problems of electricity. I know too little about it. But in order to move ahead I have to differentiate the orgone, which is well known to me though not to the electrophysicist, from electricity. Otherwise, we could not even understand the results of our measurements of the electrosopic discharges. The principle of the lightning rod proceeded from the phenomena of “friction electricity.” It is strictly at variance with the principle of electricity which is based on the movement of wires in magnetic fields. We have seen that the old static electricity, or friction electricity, is only a special case of the orgone. The principle of the lightning rod is absolutely correct, except that it has nothing to do with electricity. The lightning rod does not draw “electricity” from the clouds or the lightning. It draws orgone, just as does the point on our fluorescent gas tube.

E. That is logical, but it will cause an uproar.

O. I cannot submit to that. The facts are in complete harmony if viewed from the standpoint of orgone functions. They are at variance if they are forced into an all-embracing electrical theory. But now we might venture a first interpretation of the discharges of the orgonometer. Do you think that the well-known principle of the equalization of different levels of charge or tension is applicable here?

E. Water flows from a higher basin, or one with a greater potential energy of drop, to a lower basin with lower potential energy, and not vice versa. This is the principle of the equalization of potential differences. The “tension” existing between higher and lower altitudes or stronger and weaker charge constitutes the “potential difference.” The work produced corresponds to the kinetic energy which results from the potential energy in the process of equalization of the potential difference. This is valid for the “energy of position” as well as for electrical or caloric energy. A warmer body gives off heat to a colder one, and not vice versa. These are some of the most elementary principles of physics and I would hardly expect you to doubt them.

O. Far from it. My only interest is that of investigating, without prejudice, the functions of orgone energy. In doing so, however, I cannot let myself be led astray by principles which are valid for other forms of energy. One reason that the orgone has been overlooked and static electricity misinterpreted is precisely the fact that the orgone follows different natural laws. If, according to the basic law of electricity, energy always flows from the more to the less highly charged body, what would you expect to happen when you touch an electroscope, charged with about 200 volts, with your finger? As you have seen, with one gentle stroke of our hair, we can easily take off an amount corresponding to about 1000 volts. From the standpoint of its capacity to produce work, our organism is much more highly charged than the electroscope.

E. Our theory dictates that the electroscope would become charged to its full capacity from our organism.

O. Please touch this electroscope which is charged in the
amount of about 500 volts.

E. It *discharges* promptly and completely when I touch the disc with my finger: *energy flows from the less to the more highly charged body.* That simply doesn’t make sense!

O. It is an absurdity if you apply your electrical theory to the phenomenon. It does make sense if we recognize the validity of specific orgonotic laws of functioning. We must assume that every organism represents an autonomous *orgonotic energy system.* A stronger gamete attracts a weaker one; the ovum attracts the spermatozoon, etc. A sand bion with a strong orgone charge kills an orgonotically weak bacterium simply by withdrawing orgone energy from it.

E. I don’t know anything about biology, so I cannot judge the validity of your statements.

O. The cosmic orgone energy was discovered in the study of the functions of sexual biology and the energy of drives. Thus orgone energy must contain those energy functions which specifically differentiate life functions and mechanico-physical functions. The fundamental law of biological pulsation was not discovered until now precisely because the biologists tried to apply the laws of chemistry and physics, as they operate in the realm of the non-living, in the realm of the living. This methodological question will be a matter of polemics between orgone biophysicists and the biologists. But I don’t believe that the physicist can isolate himself from functions which are specific to the living, not only because he approaches the processes of nature as a living system, but also because there is a form of energy, the orgone, which does not follow mechanistic laws. Failure to see the special qualities of biological energy functions caused the atmospheric orgone to be overlooked. Physics claimed to be the leading natural science, even in biology. It has not fulfilled its promise. On the contrary, I am convinced that the mechanistic concepts of the universe held by physics has blocked biology from finding the path to an understanding of the life functions.

E. You are getting dangerously close to the metaphysicists who assume the existence of a special “life force.”

O. Well, nobody will doubt the existence of an energy or force which governs living functioning. It is only a matter of how it is conceived and comprehended. Physicists and mechanistic biologists deny its existence altogether. Metaphysical biologists divorce the life force completely from the realm of physics and relegate it to the supernatural. Orgone biophysics solves this problem. The specific biological energy does not exist “on the other side”; it is not metaphysical. It exists physically in the atmosphere and is demonstrable visually, thermally, and electroscopically. It functions biologically in the soil and in the living organism. There is a continual process of energy metabolism between the purely physical and the biological form of the orgone, significantly in the respiration of plants and animals. Orgone experiments have given ample demonstration that the physicist could gain much from the knowledge of purely biological functions.

E. As you probably know, a great many physicists are dissatisfied with the mechanistic concept of life. Many are metaphysicists and mechanists at the same time. They believe in the transmigration of souls.

O. and fight the functional-energy elucidation of the life process. I have often experienced that.

E. The change from purely mechanistic to functional thinking in physics has not satisfied the physicists’ need for metaphysics. The disclosure of the transformation of chemical elements, and the dissolution of the antithesis of matter and energy have certainly shaken the mechanistic world view; but instead of clarity and peace there is only more confusion in the scientific ranks. The gaps which were created in the mechanistic principle of causality have not been filled with a better, more reliable method of thought.

O. That has much to do with the purely psychiatric problem of human emotional structure, which operates in thinking as in experimenting.

E. Please, don’t bring psychiatry in this too.

O. The rigid boundaries between the natural sciences will disappear. Today’s science speaks too many languages, like the generation which sought to build the tower of Babel and foun-
ple functioning laws of nature which govern nature's processes.

E. I think that if we want to interpret your new findings we will have to go back to the simplest observations which were made in the early days of the theory of electricity.

O. Quite so. It is all too easy to get lost in the ocean of words and concepts which, in the course of centuries, have amassed from unrelated details.

E. Let us return to the primitive fact that a charged metal sphere loses energy through a metal point

O. and that the same metal sphere can take up energy through a metal point. The materials and their form are the same in both cases. The processes however are exactly opposite. Thus it is necessary to conclude that the energy in one process cannot be the same energy as in the other.

E. The process by which we charge your orgonometer is that of electrical influence. The negatively charged rod of insulating material draws positive electricity through influence into the point and gives off negative electricity into the electroscope leaf making it deflect.

O. Can you describe the form in which this function of influence takes place?

E. The process is a gradual, continual one.

O. Now, does the equalization between the negative electricity of the leaf and the positive of the sphere take place one time, or does it occur repeatedly?

E. According to the basic law of electricity, it can be only once. If, for example, the rubber rod has attached a freely suspended cork and touches it, the antithetical electrical substances or fluids become equalized. The cork takes up the electricity of the rubber rod and is consequently repelled. It cannot be attracted again without a new manipulation. Otherwise we would have produced the impossible perpetuum mobile.

O. Another theoretical orientation, in my case the orgonotic or bioenergetic one, leads to new arrangements which prove the old concept erroneous and replace it by a more correct and inclusive one.

E. Among the first electrophysicists, there were a few who did not speak of positive and negative electricity, but of a more of electricity as compared with a less of it. Others spoke of an “affluence” and “effluence” of electricity.

O. Let us stop here in order to grasp the concept of electrical influence more precisely. We bring our negatively charged rubber rod close to the point of the electroscope (orgonometer) and achieve a deflection of the leaf through “electrical influence.” The rubber rod does not touch the metal of the electroscope. Thus, electricity does not flow from the rubber rod into the metal of the electroscope. The effect of the influence takes place through the air or, better, as the result of an electrical field between rubber rod and metal point.

E. That’s correct.

O. Now, I bring my hand close to the electroscope, approaching it from above. If the electroscope is charged, that is, if the leaf is deflected, it begins to move. It goes down when I bring my hand close and it returns to its former deflection when I remove my hand.

E. Right.

O. If, however, the electroscope is not charged, I cannot produce a movement of the leaf with my hand.

E. Your hand is not a charged rubber rod.

O. But it is surrounded by an energy field! Why does the electroscope react to the electrical field or the influence by the rubber rod but not to the electrical field, or influence, of my hand?

E. This contradiction has never been explained.

O. There is more to it. As we have seen, I can influence a charged electroscope with the energy field of my hand. But I cannot influence an uncharged one.

E. I admit that is not comprehensible.

O. At the moment, our electroscope discharges an amount of energy corresponding to about 600 volts. That is, my energy field, like that of the rubber rod, is capable of strongly influencing the amount of 600 volts, increasing or decreasing it.

E. That’s a demonstrated fact. But I don’t see what you are getting at.

O. I would like to demonstrate the absurdity of a certain kind of scientific thinking, namely, that of drawing conclusions from isolated phenomena, without making comparisons. Please con-
connect the two poles of this 6-volt battery with a wire and plug it into this voltmeter.

E. It shows 6 volts.

O. Now bring the rubbed polystyrene rod and then the palm of your hand close to the wire.

E. — There is no reaction.

O. Exactly. Now, according to your theory of electricity, it should be possible that our palms or the rubbed polystyrene rod definitely disturb 600 volts by influence while at the same time they cannot influence 6 volts. That makes no sense. The wire contains electrons, and so does the metal of the electroscope. The electrons of the electroscope are set in motion by influence, while those of the wire are not!

E. Well, in the wire the electricity flows, while in the electroscope it is steady.

O. Will a whip get a standing horse going but not influence one that is in motion?

E. I admit the contradiction, but electrophysics has not solved all problems.

O. That makes the arrogance of so many of its representatives all the more incomprehensible. The point is that the field effect of the palm and the rod, which you call influence, is due to an orgonotic energy field and not an electrical one. Otherwise, my palm would disturb the 6-volt tension just as it does the 600-volt tension. Now let us try to understand the purely physical functions of the orgone by approaching it from the standpoint of biological observation. Two organisms of different sexes are "sexually attracted." If we take the energetic view of such fundamental processes as sexuality seriously, we must consider the attraction in sexual excitation an orgonotic energy process. From a strictly functional point of view, there is no process without its counterpart. The counterpart of attraction is repulsion. Repulsion, also, is a function of sexuality. After attraction has occurred, two copulating organisms adhere to each other until an orgastic energy discharge takes place in which the sexual substances are expelled as a result of repeated muscular contractions. After this, the organisms detach themselves.

E. That seems very far-fetched to me. Do you wish to com-
O. We shall carry out this experiment in the dark orgone room.

Using this polystyrene rod, please draw off orgone from your hair and bring the excited rod to about 5 cm. from this fluorescent argon tube. Then keep your hand steady.

E. — I have done so several times. Nothing much happened, except that, once, a small area of the tube began to display a weak glow.

O. Now carry out another experiment. Hold the excited rod about 30 cm. from the tube, then bring it close to the tube, so as to almost touch it, and then remove it. Repeat this as often as you wish.

E. As I come close, the tube glows several times; this happens at shorter intervals as I come closer. If I hold the rod steady at the same distance from the tube, nothing happens. If I move it away from the tube, it glows several times in succession. The more often I repeat the movement of the rod to and fro, the more brightly the tube illuminates.

O. Now move the excited rod along the tube lengthwise, and evenly.

E. There is an irregular flickering. The glowing of the argon is intermittent and does not seem to be a direct result of the even movement of the rod.

O. These phenomena cannot be explained by a uniform electrical influence from the rod to the argon gas or its ions. Otherwise, the gas would glow as long as electrical energy from the rod influences it. Then, when the electrical energy was discharged, the glow would disappear. On the other hand, these phenomena are in full accord with the basic functions of living systems. The tube illuminates only when the rod is brought close to it and removed from it. It does not glow when the rod is not being moved. A muscle contracts only when the galvanic current is turned on and turned off, not when a steady current is sent through it. These two phenomena are referred to in biology as “opening contraction” and “closing contraction.”

1Reich refers to a room in the students' laboratory at Orgonon in which the walls and ceiling were layered with metallic and non-metallic material, creating a large accumulator. [Eds.]
tion between orgone and electrical current has to be sought. But let's not go into that now. It is only important to remember that there is a functional similarity between the contraction of the muscle when the current is turned on or off, the induction current in the secondary coil with the turning on or off of the current in the primary coil, and the lumination of our argon tube when the orgone rod is brought close or removed. In all three cases, the process is dynamic, that is, functional, and not static. It is not a matter of one discharge of positive and negative electrical particles, but of a repeated attraction and dissociation in the excited substance.

E. Can you demonstrate this experimentally?

O. I succeeded in doing so after I had freed myself of the static concept of the two separate electrical fluids. Instead of the rigid, heavy, and therefore clumsy, aluminum or gold leaves, we use two thin silk threads, which we attach to a metal rod. We then interrupt the conduction from the metal rod to the metal knob by an intermediate piece of hard rubber or plastic, and bring our orgone rod close to the knob. Do you want to try it?

E. When I bring the rod, which was excited with orgone from the hair, to the knob, there are several successive attractions and repulsions of the silk threads. The same happens when I take the rod away. The reaction reminds me of contracting frog's legs. At first, I felt like rejecting this comparison.

O. Nevertheless it is entirely correct. In addition, you have reproduced the lumination phenomenon in a mechanical form. The silk threads remain immobile when you do not move the rod. They move back and forth when you bring the rod close and when you remove it again.

E. This demonstration is simple and convincing. I admit that in this case the assumption of two electrical fluids does not apply. It is not a single attraction with consecutive repulsion, but repeated attraction and repulsion. What conclusion do you draw from this observation?

O. We must assume that every establishment of contact and every interruption of contact in the energy field goes with two opposite functions in the excited substance: appearance and disappearance of excitation. The fluorescent tube luminates and ceases to luminate, a current appears and disappears in the secondary coil, and our silk threads attract and then repel one another.

E. In brief, you replace the attraction of the positive and negative electrical charges by the attraction of two orgonotically excited substances, which are exposed to the influence of one and the same orgone energy. Furthermore, you replace the repulsion due to two negative or two positive electrical fluids by the repulsion or dissociation of two orgonotically excited bodies due to the disappearance of the excitation or lumination.

O. Observation of the processes of biological excitation allows no other conclusion. Copulation and separation of two individuals are the prototype of the phenomenon. Attraction of two orgonotically excited systems is clearly and simply demonstrated to us in the realm of biology. Dissociation is more complex.

E. In our discussion today, we proceeded from the fact that the electroscope's slower rate of discharge in the orgone accumulator, and around noontime, cannot be explained on the balance of the ion theory. But I do not see how the function of attraction and repulsion of orgone energy explains the phenomenon.

O. In the early days of orgone physics, I tried to explain the orgonometer's slower discharge in the accumulator in bright sunny weather by the principle of potential difference. I assumed that the electroscope could discharge less easily into an atmosphere with a high orgone tension than into one with a low orgone tension. However, this assumption had to be dropped. Since, in the realm of orgone biophysics, the stronger orgonotic system always draws energy from the weaker, there can be no potential difference in the sense of mechanics (from high to low) or electrics (from the stronger to the weaker). Another assumption was more in accord with the facts: the orgone-excited orgonometer gives off orgone to the surrounding air and, at the same time, takes up orgone from it. Emission and absorption of energy take place simultaneously. A vacuum tube in the orgone room takes up orgone and at the same time emits it. Thus, we must give up the usual concept of potential difference and assume a simultaneous emission and absorption of orgone energy.
I suggest that we postpone the application of this new concept to the spontaneous discharges of the orgonometer until such time when further observations have made us more familiar with the characteristics of orgone functions. Thus far, we have established the following pairs of functions:

1. Absorption and emission of orgone
2. Attraction and repulsion of two orgone systems
3. Lumination and cessation of lumination of the argon gas in the moving orgone energy field.

To be continued.
Projeto Arte Org
Redescobrindo e reinterpremando W. Reich

Caro Leitor
Infelizmente, no que se refere a orgonomia, seguir os passos de Wilhelm Reich e de sua equipe de investigadores é uma questão bastante difícil, polêmica e contraditória, cheia de diferentes interpretações que mais confundem do que ajudam.
Por isto, nós decidimos trabalhar com o material bibliográfico presente nos microfilmes (Wilhelm Reich Collected Works Microfilms) em forma de PDF, disponibilizados por Eva Reich que já se encontra circulado pela internet, e que abarca o desenvolvimento da orgonomia de 1941 a 1957.

Dividimos este “material” de acordo com as revistas publicadas pelo instituto de orgonomia do qual o Reich era o diretor.
01- International Journal of Sex Economy and Orgone Research (1942-1945).
02- Orgone Energy Bulletin (1949-1953)
03- CORE Cosmic Orgone Engineering (1954-1956)

E logo dividimos estas revistas de acordo com seus artigos, apresentando-os de forma separada (em PDF), o que facilita a organizar-los por assunto ou temas.
Assim, cada qual pode seguir o rumo de suas leituras de acordo com os temas de seu interesse.
Todo o material estará disponível em inglês na nuvem e poderá ser acessado a partir de nossas páginas Web.

Sendo que nosso intuito aqui é simplesmente divulgar a orgonomia, e as questões que a ela se refere, de acordo com o próprio Reich e seus colaboradores diretos relativos e restritos ao tempo e momento do próprio Reich.
Quanto ao caminho e as postulações de cada um destes colaboradores depois da morte de Reich, já é uma questão que extrapola nossas possibilidades e nossos interesses. Sendo que aqui somente podemos ser responsáveis por nós mesmos e com muitas restrições.

Alguns destes artigos, de acordo com nossas possibilidades e interesse, já estamos traduzindo.
Não somos tradutores especializados e, portanto, pedimos a sua compreensão para possíveis erros que venham a encontrar.

Em nome da comunidade Arte Org.
Textos da área do funcionalismo orgonômico

Texts from the area of Orgonomic Functionalism.

International Journal of Sex Economy and Orgone Research

----------------------------------

Orgonomic Functionalism

----------------------------------

01 Theodore P. Wofe. The Sex-Economic Concept of Psychosomatic Indentity and Antithesis 1942
International Journal of Sex Economy and Orgone Research Volume 1 Number 1 1942
Interval 38-59 Pag. 33-54

02 Wilhelm Reich. Biophysical Functionalismo and Mechanistic Natural Science 1941
International Journal of Sex Economy and Orgone Research Volume 1 Number 2 1942
Interval 1-11 Pag. 97-107

03 Wilhelm Reich. Orgonotic Pulsation I 1944
International Journal of Sex Economy and Orgone Research Volume 3 Numbers 2 3 1944
Interval 1-54 Pag. 97-150

04 Wilhelm Reich. The Living Productive Power, Working Power of Karl Marx (1936) 1944
International Journal of Sex Economy and Orgone Research Volume 3 Numbers 2 3 1944
Interval 55-68 Pag. 151-164

05 R. H. Attkin. Mechanistic Thinking as the Original Sin 1947
McF 207 Annals of the Orgone Institute, Number 1. 1947
Interval 51-54 Pag. 95-101-------------------
01 Wilhelm Reich Cosmic Energy and Ether 1949
Interval 3-11 Pag. 143-159

02 Notes Editorial. Basic Natural-Scientific Research 1949
Interval 24-24 Pag. 184-185

03 Wilhelm Reich Orgonomic Functionalism Parte II A 1947
Interval 3-10 Pag. 1-15

04 Wilhelm Reich Orgonomic Functionalism Parte II B 1947
Interval 3-10 Pag. 49-62

05 Communications. Psychology and Natural Science 1950
Interval 23-24 Pag. 88-90

06 Wilhelm Reich Orgonomic Functionalism Parte II C 1947
Interval 4-17 Pag. 99-123

07 Wilhelm Reich Orgonometrie Equations I A. General Form 1949
Interval 5-16 Pag. 161-183

08 Wilhelm Reich Orgonometrie Equations I B. Complete 1950
Interval 4-7 Pag. 65-71
09 R. H. Atkin. Mathematical Questiones Without Answers 1951
Interval 25-27 Pag. 106-110

10 Wilhelm Reich Orgonomic Functionalism Part II D 1947
Interval 2-8 Pag. 1-12

Interval 20-23 Pag. 37-43

12 Wilhelm Reich Orgonomic Functionalism Part II E 1947
Interval 11-16 Pag. 186-196

-----------------------------

Wilhelm Reich Orgonomic Functionalism
-----------------------------

01 Wilhelm Reich The Developmental History of Orgonomic Functionalism A 1946
Wilhelm Reich-Orgonomic Functionalism - Vol I. I
Interval 6-20 Pag. 1-29

02 Wilhelm Reich The Biological Revolution from Homo Normalis to the Child of the Future 1950
Wilhelm Reich-Orgonomic Functionalism - Vol I. I
Interval 21-43 Pag. 30-74

03 Wilhelm Reich A Note on Sympathetic Understanding.
Wilhelm Reich-Orgonomic Functionalism - Vol I. I
Interval 43-47 Pag. 75-82

04 Wilhelm Reich The Silente Observer A 1952
Wilhelm Reich-Orgonomic Functionalism - Vol I. I
Interval 47-55 Pag. 83-99
05 Wilhelm Reich Functional Thinking 1950
Wilhelm Reich-Orgonomic Functionalism - Vol I. I
Interval 56-62 Pag. 100-112

06 Wilhelm Reich The Developmental History of Orgonomic Functionalism B 1946
Wilhelm Reich-Orgonomic Functionalism - Vol II. II
Interval 4-15 Pag. 1-23

07 Wilhelm Reich The Silente Observer B 1952
Wilhelm Reich-Orgonomic Functionalism - Vol II. II
Interval 16-20 Pag. 24-33

08 Wilhelm Reich Wrong Thinking Kills 1936
Wilhelm Reich-Orgonomic Functionalism - Vol II. II
Interval 21-25 Pag. 34-43

09 Wilhelm Reich On Using The Atomic Bomb 1945
Wilhelm Reich-Orgonomic Functionalism - Vol II. II
Interval 26-28 Pag. 44-49

10 Wilhelm Reich Mans Roots In Nature 1950
Wilhelm Reich-Orgonomic Functionalism - Vol II. II
Interval 29-41 Pag. 50-74

11 Wilhelm Reich The Developmental History of Orgonomic Functionalism C 1947
Wilhelm Reich-Orgonomic Functionalism - Vol III. III
Interval 4-13 Pag. 1-19

12 Wilhelm Reich Orgonotic Pulsation 1944 A
Wilhelm Reich-Orgonomic Functionalism - Vol III. III
Interval 14-35 Pag. 20-63

13 Wilhelm Reich The Evvasiveness of Homo Normalis 1947
Wilhelm Reich-Orgonomic Functionalism - Vol III. III
Interval 36-49 Pag. 64-91

14 Wilhelm Reich The Developmental History of Orgonomic Functionalism D 1947
Wilhelm Reich-Orgonomic Functionalism - Vol IV. IV
Interval 4-13 Pag. 1-18

15 Wilhelm Reich Orgonotic Pulsation 1944 B
Wilhelm Reich-Orgonomic Functionalism - Vol IV. IV
Interval 13-24 Pag. 19-40

16 Wilhelm Reich Orgone Functions in Weather Formation 1946
Wilhelm Reich-Orgonomic Functionalism - Vol IV. IV
Interval 24-29 Pag. 41-51

17 Wilhelm Reich The Attitude of Mechanistic Natural Science to the Life Problem 1941
Wilhelm Reich-Orgonomic Functionalism - Vol IV. IV
Interval 30-35 Pag. 52-63

18 Wilhelm Reich Orgonomic Functionalism in Non-Living Nature A 1947
Wilhelm Reich-Orgonomic Functionalism - Vol V. V
Interval 4-13 Pag. 1-19

19 Wilhelm Reich Orgonotic Pulsation 1944 C
Wilhelm Reich-Orgonomic Functionalism - Vol V. V
Interval 14-26 Pag. 20-44

20 Wilhelm Reich Parents as Educators 1926
Wilhelm Reich-Orgonomic Functionalism - Vol V. V
Interval 26-37 Pag. 45-66

21 Wilhelm Reich Open Season on Truth 1942
Wilhelm Reich-Orgonomic Functionalism - Vol V. V
Interval 37-48 Pag. 67-88

22 Wilhelm Reich The Fundamental Problem of Form 1935
Wilhelm Reich-Orgonomic Functionalism - Vol V. V
Interval 48-48 Pag. 89-89

23 Wilhelm Reich Orgonomic Functionalism in Non-Living Nature B 1947
Wilhelm Reich-Orgonomic Functionalism - Vol VI. VI
Interval 4-14 Pag. 1-21
24 Wilhelm Reich Orgonomic Pulsation D 1944
Wilhelm Reich-Orgonomic Functionalism - Vol VI. VI
Interval 15-21 Pag. 22-35

25 Wilhelm Reich Desert Development and Emotional Dedness 1953
Wilhelm Reich-Orgonomic Functionalism - Vol VI. VI
Interval 22-29 Pag. 36-50

26 Wilhelm Reich Process Of Integration in the Newborn and the Schizophrenic 1950
Wilhelm Reich-Orgonomic Functionalism - Vol VI. VI
Interval 29-39 Pag. 51-71

27 Wilhelm Reich The Meaning of Disposition to Disease 1944
Wilhelm Reich-Orgonomic Functionalism - Vol VI. VI
Interval 40-41 Pag. 72-75

28 Wilhelm Reich The Difficulty 1948
Wilhelm Reich-Orgonomic Functionalism - Vol VI. VI
Interval 42-42 Pag. 76-76

-------------

CORE.
-------------

Orgonomic Functionalism
-------------

01 Robert A. McCullough. Rocky Road Toward Functionalism 1955
Interval 26-31 Pag. 144-154